
Common Lisp Container Library

1. ABSTRACT
Common Lisp ships with a set of powerful built in data
structures including the venerable list, full featured arrays,
and hash-tables. The Common Lisp Container Library (CL-
Containers) enhances and builds on these structures in two
ways:

1. By adding containers that are not available in native
Lisp (for example: binary search trees, red-black trees,
sparse arrays and so on).

2. By standardizing the container interface so that they
are simpler to use and so that changing design deci-
sions becomes significantly easier.

This document discusses the design motivations of CL-Containers and
documents the structure and contents of the library in de-
tail.

2. MOTIVATION
A significant portion of almost any non-trivial programming
effort goes into the manipulation of structured data. Many
data structures can be viewed as containers. These may
be ordered or unordered, associative (indexed) or sequential
and so forth. The power and beauty of some programming
languages derives in no small part from their ability to han-
dle container classes well (Smalltalk comes to mind) and
other languages have gone to great lengths to incorporate
flexible containers into their frameworks (C++’s STL for ex-
ample). Although Common Lisp includes a number of “con-
tainers” (hash-tables, lists and arrays) there are many use-
ful data structures that are not built-in (e.g., binary search
trees) and the existing containers have a fragmented inter-
face that shows Lisp’s peripatetic evolution.

The Common Lisp Container Library (CL-Containers) ex-
tends Lisp in two ways: it adds new container functionality
and, by standardizing container interfaces, it makes using

them significantly easier. The standard interface also lends
itself to more a flexible design and development process since
data structure decisions are easier to change as the program
evolves. CL-Containers thereby expends the power of
Lisp and makes it an even better tool for both rapid proto-
typing and production code.

The remainder of this document will cover the container
types available in CL-Containers, the methods applicable
to these containers, information about the internal design
of CL-Containersand examples of containers in use. As
will become evident, CL-Containers’s design borrows from
the Standard Template Library, Smalltalk and existing Lisp
idioms wherever possible.

3. BASIC CONTAINER KINDS
The containers in CL-Containers can be divided into
three basic types: Ordered, Unordered and Associative. The
main examples of each type are given in table ??. The three
container types can be distinguished as follows: Ordered
containers store things in (some) order. The order may be
based on how items were inserted into the container or it
may depend on an explicit sorting. Unordered containers
also store things and share much of Ordered containers in-
terface. However, the items in an Unordered container do
not maintain any particular arrangment. Finally, Associa-
tive containers store items associated with some index or key.
The key may be simple (for example, a one-dimensional ar-
ray indexed by an integer) or complex (for example, a nested
hash table indexed by color, size and object class).

Before describing the methods and implementation of CL-
Containers in greater detail, a few examples should gen-
erate a better sense of how it fits into Lisp. FIrst, we use
CL-Containers for a job that would often be accomplished
using an associated list: linking one small group of things
with another.

;; a lookup table associating tokens with notes.
(defvar *tokens->notes*

(make-container ’alist-container))

(defun assign-note (token note)
"Associate a token with a note."
(setf (item-at *tokens->notes* token) note))

(defun clear-note-assignments ()
"Clear all associations."
(empty! *tokens->notes*))



Category Container Description

Unordered
Bag-container Unsorted collection of items
Set-container Unsorted collection of items ignoring duplicates

Ordered
list-container Equivalent to a Lisp list
stack-container A standard Stack
queue-container A standard Queue
priority-queue-container A standard priority queue
vector-container An extendable one dimensional array (like STL’s

vector)
binary-search-tree A standard Binary Tree
red-black-tree A balanced binary tree
ring-buffer A standard ring-buffer (useful for fixed size

queues)
Associative

alist-container Equivalent to a Lisp assoc list
array-container Equivalent to a Lisp array
associative-array-container (not-implemented)
associative-container Equivalent to using nested Lisp hash-tables.
simple-associative-container Equivalent to a Lisp hash-table
sparse-array-container An array that only allocates space when neces-

sary.

Table 1: CL-Containers main container types

The advantage of CL-Containers is that if we later learn
that our association must handle dozens or hundreds of ob-
jects, we can switch to a more efficient hash table based
association by making only one change to the code:

;; a lookup table associating tokens with notes.
;; was ’alist-container
(defvar *tokens->notes*

(make-container ’simple-associative-container))

A second example comes from a Hierarchical Agglomerative
Clustering (HAC) application. At each step in the cluster-
ing, we merge the pair of items that “goes together” best.
We store the candidate pairs in a priority queue ordered by
their distance (closer items are more likely to result in a
successful merge). Of course, there are many sorts of prior-
ity queues and the one to use will depend on actual items
being clustered. CL-Containers lets us hide the queue
implementation and defer the choice of implementation to
the last possible moment: when we actual run the clustering
algorithm.

;; The priority-queue-on-container container
;; lets you specify which container type to use
;; in storing the items in the queue (as long
;; as it supports the necessary operations).
(make-container

’priority-queue-on-container
:key #’group-average-score
:test #’(lambda (candidate1 candidate2)

(compute-distance candidate1 candidate2))
:container-type ’binary-search-tree)

In general, a heap-based or binary-search-tree based con-
tainer may be the best to use for the priority-queue. How-
ever, if we believe that many of the items will have the same
distance from one another, then a red-black-tree may be
the most appropriate because it will stay balanced. If too

many of the same items are stored in a binary-search-tree,
then it will degenerate into essentially a list!

3.1 Container Mixins
Tables ?? and ?? list the main mixins used by CL-Containers .
A typical concrete container (i.e., one that you would ac-
tually use in your application) will inherit from several of
these mixins. For example, binary-search-tree inherits from
sorted-container-mixin, findable-container-mixin and iteratable-
container-mixin. As is generally true of CLOS class design,
the mixin hierarchy provides generic implementation of com-
mon operations and helps to make clear the abilities of each
specific container class. For example, the class hierarchy
indicates that the binary-search-tree above sorts its con-
tents, supports a fast find operation and can be iterated
over. Effort has been made to split apart the various con-
tainer operations in such a way that creating new containers
is relatively easy.

4. BASIC CONTAINER METHODS
Table ?? is a list of many of the methods defined on contain-
ers. Many of these are not defined for all containers. For
example, insert-item does not make any sense for associative
containers. More information on exactly which methods are
defined for which containers is included below.

5. USING CL-Containers
CL-Containers must be loaded into your Lisp environ-
ment before it can be used. This is accomplished by loading
the file containers.lisp.

To use CL-Containers in your code, use make-container
instead of the traditional Lisp methods (e.g., make-hash-
table) then use methods like insert-item, search-for-item,
empty! and so on as necessary. The methods you use will



Class Description

abstract-container Inherited by all container classes, this is a good place
to put those pesky superclasses you need everyone to
inherit.

typed-container-mixin Elements have a specified (Lisp) type set a creation
time.

bounded-container-mixin Containers are created with a fixed size. Supports
total-size.

indexed-container-mixin Container elements can be accessed via an index. Sup-
ports item-at.

initial-element-mixin Container supports initial-element and initial-element-
fn.

initial-contents-mixin Containers can be created with initial-contents (like a
Lisp array).

iteratable-container-mixin Elements of the container can be iterated over. Sup-
ports iterate-container.

searchable-container-mixin The container can be searched (not necessarily
quickly). Supports search-for-item and search-for-
match.

findable-container-mixin The container incorporates a pre-defined search func-
tion into its structure. The function must be specified
at creation time. Supports find-item.

Table 2: CL-Containers container mixins

obviously depend on the purpose of your containers. You
may find the additional examples including in the extras
directory helpful as you get started.

6. STUFF THAT NEEDS DOCUMENTATION
CL-Containers includes some powerful and funky iterators
constructs. CL-Containers all container types and meth-
ods CL-Containers installation CL-Containers testing

7. FUTURE WORK
CL-Containers provides a useful set of data structure
abstactions that enable faster prototyping and more flex-
ible design. As always, more remains to be done. For
CL-Containers , this more falls into the following cate-
gories: additional container types, better integration with
Lisp types and improvements to the existing containers.

CL-Containers is missing some containers types (e.g.,
splay-tree) In addition, some of the existing containers
fail to implement (or implement poorly) operations that
they ought. To ameiliorate these problems, we are inves-
tigating incorporating STL-like iterators into the design of
CL-Containers. (This has been partly completed)

CL-Containersfulfils most of its goal’s admirably. It pro-
vides Lisp with useful and non-intrusive container support
and it makes Lisp a better tool for both rapid prototyping
and production development.



Class Description

ordered-container-mixin The elements in the container are ordered. Supports
first-item, item-after, item-before, last-item, delete-
first, delete-list, and insert-item.

sorted-container-mixin The elements in the container are sorted by a sort
function which must be specified at creation time.

keyed-container-mixin The container has a key functin used to specify an
accessor to its elements. Used by findable-container-
mixin and sorted-container-mixin.

uses-contents-mixin The elements in the container are stored in a slot
named contents. This mixin and its three sub-classes
(see below) abstract a group of common operations.

contents-as-array-mixin The contents of the container are stored in a Lisp ar-
ray.

contents-as-list-mixin The contents of the container are stored in a Lisp list.
contents-as-hashtable-mixin The contents of the container are stored in a Lisp hash

table.

Table 3: More CL-Containers container mixins

Class Description
abstract-queue The container supports the Queue interface. Supports

enqueue and dequeue.
abstract-stack The container supports the Stack interface. Supports

pop-item and push-item.

Table 4: CL-Containers Generic Container Templates



Method Name Description

Generic Operations
make-container create a new container
size returns the number of items currently in the container
empty-p returns t if the container is empty
empty! removes everything from the container

Insertion and Deletion
insert-item Adds a new item to a container.
delete-item Removes an item from a container.
item-at returns the item at a specified index (settable). This is only applicable

for indexed-containers.

Search and Iteration
iterate-container calls a function on each item in a container
search-for-item hunts for an item in a container (generally by iterating over all of the

items.
find-item finds an item in a container using the containers underlying structure

(usually faster than search-for-item if the container supports it)
keys-of-container Returns a list of all of the indexes of an associative container.
iterate-key-value Similar to iterate-container, this method calls a function for each (key,

value) pair in an associative container. It is analogous to maphash.

Navigation
first-item returns the first item in a container (settable)
last-item returns the last item in a container (settable)
successor Returns the item after the specified item in the container.
predecessor Returns the item before the specified item in the container.

Specialized Operations
total-size returns the maximum number of items that a container can contains

(only applicable for bounded-containers)
dequeue synonym for delete-first (for queues)
enqueue synonym for insert-item (for queues)
pop-item synonym for delete-first (for stacks)
push-item synonym for insert-item (for stacks)

Table 5: CL-Containers Container methods


